Being a student of the University of Waterloo, every other semester I have to attend interviews for Co-op positions. Although it gets easier to talk to people, the more often you do it, I still feel slightly nervous during such face-to-face interactions. During this nervousness, the fluency of my conversion isn't always the best. I tend to use unnecessary filler words ("um, umm" etc.) and repeat the same adjectives over and over again. In order to improve my speech through practice against a program, I decided to create this application.

What it does

InterPrep uses the IBM Watson "Speech-To-Text" API to convert spoken word into text. After doing this, it analyzes the words that are used by the user and highlights certain words that can be avoided, and maybe even improved to create a stronger presentation of ideas. By practicing speaking with InterPrep, one can keep track of their mistakes and improve themselves in time for "speaking events" such as interviews, speeches and/or presentations.

How I built it

In order to build InterPrep, I used the Stdlib platform to host the site and create the backend service. The IBM Watson API was used to convert spoken word into text. The mediaRecorder API was used to receive and parse spoken text into an audio file which later gets transcribed by the Watson API.

The languages and tools used to build InterPrep are HTML5, CSS3, JavaScript and Node.JS.

Challenges I ran into

"Speech-To-Text" API's, like the one offered by IBM tend to remove words of profanity, and words that don't exist in the English language. Therefore the word "um" wasn't sensed by the API at first. However, for my application, I needed to sense frequently used filler words such as "um", so that the user can be notified and can improve their overall speech delivery. Therefore, in order to implement this word, I had to create a custom language library within the Watson API platform and then connect it via Node.js on top of the Stdlib platform. This proved to be a very challenging task as I faced many errors and had to seek help from mentors before I could figure it out. However, once fixed, the project went by smoothly.

Accomplishments that I'm proud of

I am very proud of the entire application itself. Before coming to Qhacks, I only knew how to do Front-End Web Development. I didn't have any knowledge of back-end development or with using API's. Therefore, by creating an application that contains all of the things stated above, I am really proud of the project as a whole. In terms of smaller individual accomplishments, I am very proud of creating my own custom language library and also for using multiple API's in one application successfully.

What I learned

I learned a lot of things during this hackathon. I learned back-end programming, how to use API's and also how to develop a coherent web application from scratch.

What's next for InterPrep

I would like to add more features for InterPrep as well as improve the UI/UX in the coming weeks after returning back home. There is a lot that can be done with additional technologies such as Machine Learning and Artificial Intelligence that I wish to further incorporate into my project!

Built With

Share this project: