Inspiration
Supervised learning is given so much attention in the world of deep learning that we often forget about unsupervised methods.
What it does
I've implemented a version of Deep Embedded Clustering (DEC) in a Google Colab notebook that clusters the MNIST dataset with 89% unsupervised cluster accuracy. This is in contrast to the 52% achieved with PCA to n-dimensions and KMeans. The current design is a variational autoencoder that compresses the input data to 50-dimensional latent space before assigning cluster centres with KMeans and computing KL divergence.
How I built it
With an awful lot of reading, as well as a fair bit of battling with TensorFlow.
Challenges I ran into
I realised 14 hours in I'd built my loss metrics incorrectly.
Accomplishments that I'm proud of
I managed to produce a model that performs better than traditional clustering methods.
What I learned
How to install LaTeX for Windows. How to create custom layers for TensorFlow
What's next for Deep Clustering (with a Conv-Vari Autoencoder) on MNIST
Write a literature review
Built With
- google-cloud
- google-colab
- python
- tensorflow
Log in or sign up for Devpost to join the conversation.